method of proof造句
例句與造句
- A new method of proof on the distance formula from the point to the plane
點到平面距離公式的一種新證法 - A necessary and sufficient condition for coexistence of positive periodic solutions is obtained . the result we get can be seen an extension of [ 30 ] . in this paper , we partially bring new ideas in the model establishing and some methods of proof
我們利用周期拋物型算子理論l ” ,解耦方法皿1 , schauder估計舶和分歧理論山‘ ’解決了周期捕食食餌系統(tǒng)的正解的共存態(tài),得到了系統(tǒng)正周期解存在的一個充要條件 - Chapter 2 of this paper , by using a new method of proof , we obtain the weak ergodic convergence theorem for general semigroups of asymptotically nonexpansive type semigroups in reflexive banach space . by theorem 2 . 1 of chapter 1 we get the weak ergodic convergence theorem of almost orbit for general semigroups of asymptotically nonexpansive type semigroups in reflexive banach space . by this method of proof , we give the weak ergodic convergence theorems for right reversible semigroups . by theorem 2 . 1 of chapter l , we generalize the result to almost orbit case . so we can remove a key supposition that almost orbit is almost asymptotically isometric . it includes all commutative semigroups cases . baillon [ 8 ] , hirano and takahashi [ 9 ] gave nonlinear retraction theorems for nonexpansive semigroups . recently mizoguchi and takahashi [ 10 ] proved a nonlinear ergodic retraction theorem for lipschitzian semigroups . hirano and kido and takahashi [ 11 ] , hirano [ 12 ] gave nonlinear retraction theorems for nonexpansive mappings in uniformly convex banach spaces with frechet differentiable norm . . in 1997 , li and ma [ 16 ] proved the ergodic retraction theorem for general semitopological semigroups in hilbert space without the conditions that the domain is closed and convex , which greatly extended the fields of applications of ergodic theory . chapter 2 of this paper , we obtain the ergodic retraction theorem for general semigroups and almost orbits of asymptotically nonexpansive type semigroups in reflexive banach spaces . and we give the ergodic retraction theorem for almost orbits of right reversible semitopological semigroups
近年來, bruck [ 5 ] , reich [ 6 ] , oka [ 7 ]等在具frechet可微范數(shù)的一致凸banach空間中給出了非擴張及漸近非擴張映射及半群的遍歷收斂定理。 li和ma [ 13 ]在具frechet可微范數(shù)的自反banach空間中給出了一般交換漸近非擴張型拓撲半群的遍歷收斂定理,這是一個重大突破。本文第二章用一種新的證明方法在自反banach空間中,研究了揚州大學碩士學位論文2一般半群上的( r )類漸近非擴張型半群的弱遍歷收斂定理,即:定理3 . 1設(shè)x是具性質(zhì)( f )的實自反banach空間, c是x的非空有界閉凸子集, g為含單位元的一般半群, s =仕工, 。 - It's difficult to find method of proof in a sentence. 用method of proof造句挺難的